The general solutions to the reflection equation of the Izergin-Korepin model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 326021
(http://iopscience.iop.org/0305-4470/32/33/302)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:39

Please note that terms and conditions apply.

The general solutions to the reflection equation of the Izergin-Korepin model

Heng Fan, Boyu Hou, Guangliang Li, Kangjie Shi and Ruihong Yue
Institute of Modern Physics, PO Box 105, Northwest University, Xian 710069, China

Received 5 May 1999, in final form 22 June 1999

Abstract

We obtain the general solutions to the reflection equation of the Izergin-Korepin model. The general solutions have two free parameters and will reduce to the non-trivial diagonal solutions when both free parameters vanish. It will also reduce to the solutions with upper-lower triangular structures when one of the parameters vanishes. Moreover, the Hamiltonian with boundary terms for the system is obtained.

1. Introduction

Since Sklyanin proposed the generalized algebra Bethe ansatz method to deal with the openboundary solvable models based on the reflection equation [1,2], much work has been done on the solutions of the reflection equation [3-16]. However, at present, there are only a few models whose general reflecting K-matrices have been obtained [11-16].

The R-matrix of the Izergin-Korepin model [17] or $A_{2}^{(2)}$ model $[18,19]$ is the simplest example of an R-matrix of the twisted type. The diagonal solutions to the reflection equation for the model were first obtained by Mezincescu and Nepomechie [8] by solving the reflection equation directly, and later obtained by Batchelor et al [9] by taking the vertex limit to the diagonal face-reflecting K-matrices of the $A_{2}^{(2)}$ model. The non-diagonal case was first considered by Kim [10]. By assuming the solutions to be proportional to identity when the spectral parameter u is zero, he obtained three families of non-diagonal solutions. One family of solutions will reduce to the identity solution when one of the parameters in the solutions vanishes. The other two families of solutions have only one free parameter and have upper-lower triangular structures. However, no solutions with every element of the K-matrix non-vanishing are obtained.

Enlightened by the work of Inami et al in calculating the general reflecting K-matrices for the $A_{1}^{(1)}$ model [16], we present the general reflecting K-matrices for the $A_{2}^{(2)}$ model by solving the reflection equation directly. The general solutions we obtained have two free parameters and will reduce to the non-trivial diagonal solutions when both free parameters vanish. It will also reduce to the solutions with upper-lower triangular structures when one of the parameters vanishes, which include two cases solutions in [10]. Moreover, the Hamiltonian with general boundary terms for the model is obtained.

2. The Izergin-Korepin model and reflection equation

The R-matrix for the Izergin-Korepin model $[17]$ or $A_{2}^{(2)}$ model $[18,19]$ is

$$
R(u)=\left[\begin{array}{lllllllll}
c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{1}\\
0 & b & 0 & e & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & d & 0 & g & 0 & f & 0 & 0 \\
0 & \bar{e} & 0 & b & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \bar{g} & 0 & a & 0 & g & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & b & 0 & e & 0 \\
0 & 0 & \bar{f} & 0 & \bar{g} & 0 & d & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \bar{e} & 0 & b & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c
\end{array}\right]
$$

with

$$
\begin{align*}
& a(u)=\sinh (u-3 q)-\sinh (5 q)+\sinh (3 q)+\sinh (q) \\
& b(u)=\sinh (u-3 q)+\sinh (3 q) \\
& c(u)=\sinh (u-5 q)+\sinh (q) \\
& d(u)=\sinh (u-q)+\sinh (q) \\
& e(u)=-2 \mathrm{e}^{-u / 2} \sinh (2 q) \cosh (u / 2-3 q) \tag{2}\\
& \bar{e}(u)=-2 \mathrm{e}^{u / 2} \sinh (2 q) \cosh (u / 2-3 q) \\
& f(u)=-2 \mathrm{e}^{-u+2 q} \sinh (q) \sinh (2 q)-\mathrm{e}^{-q} \sinh (4 q) \\
& \bar{f}(u)=2 \mathrm{e}^{u-2 q} \sinh (q) \sinh (2 q)-\mathrm{e}^{q} \sinh (4 q) \\
& g(u)=2 \mathrm{e}^{-u / 2+2 q} \sinh (u / 2) \sinh (2 q) \\
& \bar{g}(u)=-2 \mathrm{e}^{u / 2-2 q} \sinh (u / 2) \sinh (2 q) .
\end{align*}
$$

One can check that the R-matrix satisfies the following properties:
regularity:

$$
R_{12}(0)=\rho(0)^{1 / 2} \mathcal{P}_{12}
$$

$$
\text { unitarity: } \quad R_{12}(u) R_{12}^{t_{1} t_{2}}(-u)=\rho(u)
$$

$$
\begin{equation*}
\text { PT-symmetry: } \quad \mathcal{P}_{12} R_{12}(u) \mathcal{P}_{12}=R_{12}^{t_{1} t_{2}}(u) \tag{3}
\end{equation*}
$$

$$
\text { crossing-symmetry: } \quad R_{12}(u)=\stackrel{1}{V} R_{12}^{t_{2}}(-u-\eta) V^{-1}
$$

Here \mathcal{P} is the exchange operator defined by $\mathcal{P}(x \otimes y)=y \otimes x, t_{i}$ denotes transposition in the space $i, \stackrel{1}{V}=V \otimes 1, \stackrel{2}{V}=1 \otimes V, \eta$ is the crossing parameter and V determines the crossing matrix $M \equiv V^{t} V=M^{t}$ with $\eta=-6 q-\sqrt{-1} \pi$ and $M=\operatorname{diag}\left(\mathrm{e}^{2 q}, 1, \mathrm{e}^{-2 q}\right)$, $\rho(u)=((\sinh (q)-\sinh (5 q+u))(\sinh (q)-\sinh (5 q-u)))$.

The R-matrix also fulfils the Yang-Baxter equation (YBE) [20,21]

$$
\begin{equation*}
R_{12}(u) R_{13}(u+v) R_{23}(v)=R_{23}(v) R_{13}(u+v) R_{12}(u) \tag{4}
\end{equation*}
$$

where $R_{12}(u), R_{13}(u)$ and $R_{23}(u)$ act on $C^{3} \otimes C^{3} \otimes C^{3}$, with $R_{12}(u)=R(u) \otimes 1, R_{23}(u)=$ $1 \otimes R(u)$, etc.

For an $N \times N$ square lattice, if we can find $K_{ \pm}(u)$ which satisfy the reflection equations given by [2, 22]

$$
\begin{equation*}
\left.R_{12}(u-v) \stackrel{1}{K}-(u) R_{12}^{t_{1} t_{2}}(u+v) \stackrel{2}{K}-_{-}(v)=\stackrel{2}{K}_{-}(v) R_{12}(u+v){\stackrel{1}{K}-(u) R_{12}^{t_{1} t_{2}}(u-v)}^{(}\right) \tag{5}
\end{equation*}
$$

$$
\begin{align*}
R_{12}(-u+v) \stackrel{1}{K_{+}^{t_{1}}}(u) \stackrel{1}{M} \\
 \tag{6}\\
\quad=\stackrel{2}{K_{+}^{t_{2}}}(v) \stackrel{1}{R_{1}^{t_{1} t_{2}}}(-u-v-2 \eta) \stackrel{1}{M} R_{12}^{2}(-u-v-2 \eta) \stackrel{1}{M_{+}^{t_{2}}}(v) \\
K_{+}^{-1}
\end{align*}
$$

where equation (5) is called the reflection equation and equation (6) is called the dual-reflection equation, $\stackrel{1}{K}_{ \pm}(u)=K_{ \pm}(u) \otimes 1, \stackrel{2}{K}_{ \pm}(u)=1 \otimes K_{ \pm}(u)$. Then the transfer matrix $t(u)$ defined as

$$
\begin{equation*}
t(u)=\operatorname{tr} K_{+}(u) T(u) K_{-}(u) T^{-1}(-u) \tag{7}
\end{equation*}
$$

can constitute a one-parameter commutative family $[t(u), t(v)]=0$. Here

$$
\begin{equation*}
T(u)=R_{01}(u) R_{02} \cdots R_{0 N}(u) \tag{8}
\end{equation*}
$$

the space V_{0} is usually called the auxiliary space, the space $V_{1} \otimes V_{2} \cdots \otimes V_{N}$ is called the quantum space. The corresponding integrable open chain Hamiltonian takes the form

$$
\begin{equation*}
H=\sum_{k=1}^{N-1} H_{k, k+1}+\frac{1}{2} \stackrel{1}{K}_{-}^{\prime}(0)+\frac{\operatorname{tr} K_{+}^{0}(0) H_{N, 0}}{\operatorname{tr} K_{+}(0)} \tag{9}
\end{equation*}
$$

where $H_{k, k+1}=\left.\mathcal{P}_{k, k+1} R_{k k+1}^{\prime}(u)\right|_{u=0}$.
From equations (5) and (6), one can see that, given a solution $K_{-}(u)$ of equation (5), the matrix

$$
\begin{equation*}
K_{+}(u)=K_{-}^{t}(-u-\eta) M \tag{10}
\end{equation*}
$$

satisfies equation (6).

3. The solution to the reflection equation

After a tedious calculation (see the appendix), we achieve the $K_{-}(u)$ to equation (5) which is

$$
K_{-}(u)=\rho^{K}(u)\left[\begin{array}{ccc}
x_{1}(u) & y_{11}(u) & z_{1}(u) \tag{11}\\
y_{21}(u) & x_{2}(u) & y_{12}(u) \\
z_{2}(u) & y_{22}(u) & x_{3}(u)
\end{array}\right]
$$

where $\rho^{K}(u)$ is an arbitrary function,

$$
\begin{array}{ll}
y_{11}(u)=\mu_{-}\left(c-\mathrm{e}^{q-u}\right) \sinh (u) & y_{21}(u)=\tilde{\mu}_{-}\left(c-\mathrm{e}^{q-u}\right) \sinh (u) \\
y_{12}(u)=\mu_{-} \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right) \sinh (u) & y_{22}(u)=\tilde{\mu}_{-} \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right) \sinh (u) \\
z_{1}(u)=\mu_{-}^{2} \cosh (q-u) \sinh (u) & z_{2}(u)=\tilde{\mu}_{-}^{2} \cosh (q-u) \sinh (u)
\end{array} \begin{array}{r}
\begin{aligned}
& x_{1}(u)= \frac{\mathrm{e}^{-q-u}}{\cosh (q)}(c \cosh (q)+\sinh (u-2 q)) \\
& \quad+\tilde{\mu}_{-} \mu_{-} \cosh (q-u)\left(c \cosh (2 q)-\mathrm{e}^{-u} \sinh (q)\right)
\end{aligned} \\
\begin{array}{r}
x_{2}(u)=\frac{\mathrm{e}^{-q}}{\cosh (q)}(c \cosh (q+u)-\sinh (2 q)) \\
\quad+\tilde{\mu}_{-} \mu_{-} \cosh (q-u)(c \cosh (2 q)+\sinh (u-q))
\end{array} \\
\begin{array}{r}
x_{3}(u)=\frac{\mathrm{e}^{-q+u}}{\cosh (q)}(c \cosh (q)+\sinh (u-2 q)) \\
\quad+\tilde{\mu}_{-} \mu_{-} \cosh (q-u)\left(c \cosh (2 q)-\mathrm{e}^{u} \sinh (q)\right)
\end{array}
\end{array}
$$

where $\mu_{-}, \tilde{\mu}_{-}$are arbitrary parameters, c satisfies $c^{2}=-1$. If we choose

$$
\begin{equation*}
\rho^{k}(u)=\left(x_{2}(u) x_{2}(-u)+y_{11}(-u) y_{21}(u)+y_{12}(u) y_{22}(-u)\right)^{-1 / 2} \tag{14}
\end{equation*}
$$

there are

$$
\begin{equation*}
K_{-}(0)=1 \quad K_{-}(u) K_{-}(-u)=1 . \tag{15}
\end{equation*}
$$

4. The Hamiltonian with boundary terms

Let $K_{-}(u)=K_{-}\left(u ; \mu_{-}, \tilde{\mu}_{-}\right)$. We define $K_{+}(u)=K_{-}^{t}\left(-u-\eta ; \tilde{\mu}_{+}, \mu_{+}\right) M$ due to (10), where $\mu_{ \pm}, \tilde{\mu}_{ \pm}$are arbitrary parameters. From (1), (2), (9), (11)-(14), we obtain
$H=\sum_{n=1}^{N-1}\left\{\frac{1}{4} a_{1}\left(s_{n}^{+} s_{n}^{-} s_{n+1}^{+} s_{n+1}^{-}+s_{n}^{-} s_{n}^{+} s_{n+1}^{-} s_{n+1}^{+}\right)+\frac{1}{4} a_{2} s_{n}^{+} s_{n}^{-} s_{n+1}^{-} s_{n+1}^{+}+\frac{1}{4} a_{3} s_{n}^{-} s_{n}^{+} s_{n+1}^{+} s_{n+1}^{-}\right.$
$+a_{4}\left(s_{n}^{3} s_{n+1}^{3}+\left(s_{n}^{3}\right)^{2}\left(s_{n+1}^{3}\right)^{2}\right)+\frac{1}{2} a_{5}\left(s_{n}^{+} s_{n}^{-}\left(s_{n+1}^{3}\right)^{2}+\left(s_{n}^{3}\right)^{2} s_{n+1}^{-} s_{n+1}^{+}\right)$
$+\frac{1}{2} a_{6}\left(s_{n}^{-} s_{n}^{+}\left(s_{n+1}^{3}\right)^{2}+\left(s_{n}^{3}\right)^{2} s_{n+1}^{+} s_{n+1}^{-}\right)+\frac{1}{4} a_{7}\left(\left(s_{n}^{+}\right)^{2}\left(s_{n+1}^{-}\right)^{2}+\left(s_{n}^{-}\right)^{2}\left(s_{n+1}^{+}\right)^{2}\right)$
$+\frac{1}{2} a_{8}\left(s_{n}^{3} s_{n}^{+} s_{n+1}^{-} s_{n+1}^{3}+s_{n}^{3} s_{n}^{-} s_{n+1}^{+} s_{n+1}^{3}+s_{n}^{-} s_{n}^{3} s_{n+1}^{3} s_{n+1}^{+}+s_{n}^{+} s_{n}^{3} s_{n+1}^{3} s_{n+1}^{+}\right)$
$\left.-\frac{1}{2} a_{9}\left(s_{n}^{3} s_{n}^{-} s_{n+1}^{3} s_{n+1}^{+}+s_{n}^{+} s_{n}^{3} s_{n+1}^{-} s_{n+1}^{3}\right)-\frac{1}{2} a_{10}\left(s_{n}^{3} s_{n}^{+} s_{n+1}^{3} s_{n+1}^{-}+s_{n}^{-} s_{n}^{3} s_{n+1}^{+} s_{n+1}^{3}\right)\right\}$
$+\frac{1}{\rho^{k}}\left\{\frac{1}{2} x_{1}\left(s_{1}^{3}+\left(s_{1}^{3}\right)^{2}\right)+\frac{1}{2} x_{2}\left(s_{1}^{+} s_{1}^{-}-s_{1}^{3}-\left(s_{1}^{3}\right)^{2}\right)+\frac{1}{2} x_{3}\left(\left(s_{1}^{3}\right)^{2}-s_{1}^{3}\right)\right.$
$+\frac{y_{1}}{\sqrt{2}}\left(\mu_{-} s_{1}^{3} s_{1}^{+}+\tilde{\mu}_{-} s_{1}^{-} s_{1}^{3}\right)-\frac{y_{2}}{\sqrt{2}}\left(\mu_{-} s_{1}^{+} s_{1}^{3}+\tilde{\mu}_{-} s_{1}^{3} s_{1}^{-}\right)$
$\left.\left.+\frac{1}{2} z\left(\mu_{-}^{2}\left(s_{1}^{+}\right)^{2}+\tilde{\mu}_{-}^{2}\left(s_{1}^{-}\right)^{2}\right)\right)\right\}$
$+\frac{1}{\operatorname{tr} \tilde{k}}\left\{\frac{\tilde{x}_{1}}{2}\left(s_{N}^{3}+\left(s_{N}^{3}\right)^{2}\right)+\frac{\tilde{x}_{2}}{2}\left(s_{N}^{+} s_{N}^{-}-s_{N}^{3}-\left(s_{N}^{3}\right)^{2}\right)+\frac{\tilde{x}_{3}}{2}\left(\left(s_{N}^{3}\right)^{2}-s_{N}^{3}\right)\right.$
$+\frac{\tilde{y}_{1}}{\sqrt{2}}\left(\mu_{+} s_{N}^{3} s_{N}^{+}+\mathrm{e}^{2 q} \tilde{\mu}_{+} s_{N}^{-} s_{N}^{3}\right)-\frac{\tilde{y}_{2}}{\sqrt{2}}\left(\mu_{+} s_{N}^{+} s_{N}^{3}+\mathrm{e}^{2 q} \tilde{\mu}_{+} s_{N}^{3} s_{N}^{-}\right)$
$\left.+\frac{1}{2} \tilde{z}\left(\mathrm{e}^{-2 q} \mu_{+}^{2}\left(s_{N}^{+}\right)^{2}+\mathrm{e}^{2 q} \tilde{\mu}_{+}^{2}\left(s_{N}^{-}\right)^{2}\right)\right\}+$ constant $\cdot i d$.
Here,

$$
\begin{array}{ll}
a_{1}=\sinh (q) \sinh (2 q) & a_{2}=\frac{1}{2}\left(\mathrm{e}^{q}-\sinh (5 q)\right) \\
a_{3}=\frac{1}{2}\left(\mathrm{e}^{-q}+\sinh (5 q)\right) & a_{4}=\frac{1}{4}(\cosh (5 q)+2 \cosh (q)) \\
a_{5}=\frac{1}{4}\left(\cosh (5 q)-2 \mathrm{e}^{-2 q} \cosh (q)\right) & a_{6}=\frac{1}{4}\left(\cosh (5 q)-2 \mathrm{e}^{2 q} \cosh (q)\right) \\
a_{7}=\cosh (q) & a_{8}=\cosh (3 q) \\
a_{9}=\mathrm{e}^{2 q} \sinh (2 q) & a_{10}=-\mathrm{e}^{-2 q} \sinh (2 q) \\
& \\
x_{1}=\frac{\mathrm{e}^{q}}{\cosh (q)}-c \mathrm{e}^{-q}+\tilde{\mu}_{-} \mu_{-} \sinh (q)\left(\mathrm{e}^{q}-c \cosh (2 q)\right) \\
x_{2}=\frac{c \mathrm{e}^{-q}}{\cosh (q)}+\tilde{\mu}_{-} \mu_{-} \cosh (2 q)(1-c \sinh (q))
\end{array}
$$

$$
\begin{aligned}
& x_{3}=\frac{\mathrm{e}^{-3 q}}{\cosh (q)}+c \mathrm{e}^{-q}-\tilde{\mu}_{-} \mu_{-} \sinh (q)\left(\mathrm{e}^{-q}+c \cosh (2 q)\right) \\
& y_{1}=c-\mathrm{e}^{q} \quad y_{2}=\mathrm{e}^{-q}\left(c+\mathrm{e}^{-q}\right) \quad z=\cosh (q) \\
& \rho^{k}=\mathrm{e}^{-q}(c-\sinh (q))+\tilde{\mu}_{-} \mu_{-} \cosh (q)(c \cosh (2 q)-\sinh (q)) \\
& \tilde{x}_{1}=\left(a_{1}+a_{5}+a_{6}+2 a_{4}\right) x_{11}+\left(a_{1}+a_{2}+a_{5}+a_{6}\right) x_{22}+\left(a_{2}+2 a_{5}\right) x_{33} \\
& \tilde{x}_{2}=\left(a_{1}+a_{3}+a_{5}+a_{6}\right) x_{11}+\left(2 a_{1}+a_{2}+a_{3}\right) x_{22}+\left(a_{1}+a_{2}+a_{5}+a_{6}\right) x_{33} \\
& \tilde{x}_{3}=\left(a_{3}+2 a_{6}\right) x_{11}+\left(a_{1}+a_{3}+a_{5}+a_{6}\right) x_{22}+\left(a_{1}+2 a_{4}+a_{5}+a_{6}\right) x_{33} \\
& \tilde{y}_{1}=-\left(\left(c+\mathrm{e}^{-5 q}\right) a_{8}+\mathrm{e}^{-3 q}\left(c-\mathrm{e}^{5 q}\right) a_{10}\right) \sinh (6 q) \\
& \tilde{y}_{2}=-\left(\left(c+\mathrm{e}^{-5 q}\right) a_{9}+\mathrm{e}^{-3 q}\left(c-\mathrm{e}^{5 q}\right) a_{8}\right) \sinh (6 q) \\
& \tilde{z}=a_{7} \cosh (5 q) \sinh (6 q) \\
& \operatorname{tr} \tilde{k}=x_{11}+x_{22}+x_{33}
\end{aligned}
$$

with
$x_{11}=\frac{\mathrm{e}^{-5 q} \sinh (4 q)}{\cosh (q)}-c \mathrm{e}^{-5 q}-\tilde{\mu}_{+} \mu_{+} \mathrm{e}^{2 q} \cosh (5 q)\left(c \cosh (2 q)+\mathrm{e}^{-6 q} \sinh (q)\right)$
$x_{22}=-\frac{\mathrm{e}^{-q}}{\cosh (q)}(\sinh (2 q)+c \cosh (7 q))-\tilde{\mu}_{+} \mu_{+} \cosh (5 q)(c \cosh (2 q)-\sinh (5 q))$
$x_{33}=\frac{\mathrm{e}^{3 q} \sinh (4 q)}{\cosh (q)}-c \mathrm{e}^{3 q}-\tilde{\mu}_{+} \mu_{+} \mathrm{e}^{-2 q} \cosh (5 q)\left(c \cosh (2 q)+\mathrm{e}^{6 q} \sinh (q)\right)$.
The spin- 1 operator $s^{3}, s^{ \pm}\left(s^{1} \pm \mathrm{i} s^{2}\right)$ is given by
$s^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right) \quad s^{+}=\sqrt{2}\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right) \quad s^{-}=\sqrt{2}\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$.

Acknowledgments

We would like to thank Professor J D Kim for his preprint hep-th/9412192. After submitting this paper we found the preprint by A Lima-Santos solv-int/9906003, whose solutions for the IK model include the case of our results. GLLi would like to thank Professor Liu Zhao for his help.

Appendix

We now construct the reflecting matrix $K_{-}(v)$ which can be parametrized as

$$
K_{-}(v)=\rho^{K}(v)\left[\begin{array}{ccc}
x_{1}(v) & y_{11}(v) & z_{1}(v) \tag{A1}\\
y_{21}(v) & x_{2}(v) & y_{12}(v) \\
z_{2}(v) & y_{22}(v) & x_{3}(v)
\end{array}\right]
$$

where $\rho^{K}(v)$ is an arbitrary function. For simplicity, we denote the (i, j) component of equation (5) as $\mathrm{Eq}[i, j]$ at first. One can find that $\mathrm{Eq}[j, i]$ can be obtained from $\mathrm{Eq}[i, j]$ by interchanging $y_{11} \Leftrightarrow y_{21}, y_{12} \Leftrightarrow y_{22}, z_{1} \Leftrightarrow z_{2}$ and $\mathrm{Eq}[10-i, 10-j]$ can be obtained from $\mathrm{Eq}[i, j]$ by interchanging $x_{1} \Leftrightarrow x_{3}, y_{11} \Leftrightarrow y_{12}, y_{21} \Leftrightarrow y_{22}, e \Leftrightarrow \bar{e}, f \Leftrightarrow \bar{f}, g \Leftrightarrow \bar{g}$.

There are 81 function equations and we only pick up some simple-looking ones to obtain the solutions of the matrix $K_{-}(v)$. Our whole process can be divided into two steps. The first
step is to obtain all the non-diagonal elements of $K(v)$. Another step is to achieve the diagonal elements of $K(v)$. We begin with the first step. From Eq[2.8], we have

$$
\begin{gather*}
\mathrm{e}^{-2 q+(u+v) / 2} \sinh \left(\frac{1}{2}(u-v)\right) y_{11}(u) y_{11}(v)+\mathrm{e}^{(v-u) / 2} \cosh \left(q-\frac{1}{2}(u+v)\right) y_{11}(v) y_{12}(u) \\
=-\mathrm{e}^{2 q-(u+v) / 2} \sinh \left(\frac{1}{2}(u-v)\right) y_{12}(u) y_{12}(v) \\
\quad+\mathrm{e}^{(u-v) / 2} \cosh \left(q-\frac{1}{2}(u+v)\right) y_{11}(u) y_{12}(v) . \tag{A2}
\end{gather*}
$$

Dividing both side of (A2) by $y_{12}(u) y_{12}(v)$ and differentiating it with respect to u, then letting $u=0$, we have

$$
\begin{equation*}
\frac{y_{11}(v)}{y_{12}(v)}=\frac{c-\mathrm{e}^{q-v}}{\mathrm{e}^{-q}\left(c+\mathrm{e}^{v-q}\right)} \tag{A3}
\end{equation*}
$$

where c is an arbitrary constant. Taking into account that $y_{11}(v), y_{12}(v)$ may be zero, we can obtain

$$
\begin{equation*}
y_{11}(v)=\mu\left(c-\mathrm{e}^{q-v}\right) f(v) \quad y_{12}(v)=\mu \mathrm{e}^{-q}\left(c+\mathrm{e}^{v-q}\right) f(v) \tag{A4}
\end{equation*}
$$

where $f(v) \not \equiv 0$ is an arbitrary function. Substituting (A3) into $\mathrm{Eq}[2.9]$
$\left(\cosh \left(3 q-\frac{1}{2}(u+v)\right) \sinh \left(\frac{1}{2}(u-v)\right)\right.$

$$
\begin{align*}
& \left.-\cosh \left(q-\frac{1}{2}(u+v)\right) \sinh \left(-2 q+\frac{1}{2}(u-v)\right)\right) y_{12}(v) z_{1}(u) \\
= & \left(\mathrm{e}^{-2 q+(u+v) / 2} \sinh (2 q) \sinh \left(\frac{1}{2}(u-v)\right) y_{11}(u)\right. \\
& \left.+\mathrm{e}^{(v-u) / 2} \sinh (2 q) \cosh \left(q-\frac{1}{2}(u+v)\right) y_{12}(u)\right) z_{1}(v) \tag{A5}
\end{align*}
$$

we obtain

$$
\begin{equation*}
\frac{z_{1}(u)}{z_{1}(v)}=\frac{\cosh (q-u) f(u)}{\cosh (q-v) f(v)} . \tag{A6}
\end{equation*}
$$

Therefore, we obtain the following result:

$$
\begin{align*}
& y_{11}(v)=\mu\left(c-\mathrm{e}^{q-v}\right) f(v) \quad y_{12}(v)=\mu \mathrm{e}^{-q}\left(c+\mathrm{e}^{v-q}\right) f(v) \tag{A7}\\
& z_{1}(v)=v \cosh (q-v) f(v)
\end{align*}
$$

where μ, ν are arbitrary constants. Similarly, by Eq[8.2] and Eq[9.2]

$$
\begin{align*}
& y_{21}(v)=\tilde{\mu}\left(\tilde{c}-\mathrm{e}^{q-v}\right) g(v) \quad y_{22}(v)=\tilde{\mu} \mathrm{e}^{-q}\left(\tilde{c}+\mathrm{e}^{v-q}\right) g(v) \\
& z_{2}(v)=\tilde{v} \cosh (q-v) g(v) \tag{A8}
\end{align*}
$$

where $\tilde{c}, \tilde{\mu}, \tilde{v}$ are arbitrary constants and $g(v) \not \equiv 0$ is an arbitrary function. From Eq[1.1] and Eq[9.9], we have

$$
\begin{align*}
& \cosh (3 q-(u+v) / 2)\left(y_{11}(u) y_{21}(v)-y_{11}(v) y_{21}(u)\right) \\
& \quad=-\left(\cosh (3 q-(u+v) / 2)+\mathrm{e}^{q} \sinh ((u+v) / 2)\right)\left(z_{1}(u) z_{2}(v)-z_{1}(v) z_{2}(u)\right) \\
& \cosh (3 q-(u+v) / 2)\left(y_{12}(u) y_{22}(v)-y_{12}(v) y_{22}(u)\right) \tag{A9}\\
& \quad=-\left(\cosh (3 q-(u+v) / 2)-\mathrm{e}^{-q} \sinh ((u+v) / 2)\right)\left(z_{1}(u) z_{2}(v)-z_{1}(v) z_{2}(u)\right) . \tag{A10}
\end{align*}
$$

Applying equations (A7) and (A8) to the above two equations, we can obtain the following three results:

$$
\begin{array}{ll}
y_{11}(v)=\mu\left(c-\mathrm{e}^{q-v}\right) g(v) & y_{21}(v)=\tilde{\mu}\left(c-\mathrm{e}^{q-v}\right) g(v) \\
y_{12}(v)=\mu \mathrm{e}^{-q}\left(c+\mathrm{e}^{v-q}\right) g(v) & y_{22}(v)=\tilde{\mu} \mathrm{e}^{-q}\left(c+\mathrm{e}^{v-q}\right) g(v) \tag{A11}\\
z_{1}(v)=v \cosh (q-v) g(v) & z_{2}(v)=\tilde{v} \cosh (q-v) g(v)
\end{array}
$$

$$
\begin{array}{ll}
y_{11}(v)=\mu\left(c-\mathrm{e}^{q-v}\right) f(v) & y_{21}(v)=0 \\
y_{12}(v)=\mu \mathrm{e}^{-q}\left(c+\mathrm{e}^{v-q}\right) f(v) & y_{22}(v)=0 \\
z_{1}(v)=0 & z_{2}(v)=\tilde{v} \cosh (q-v) g(v) \\
y_{11}(v)=0 & y_{21}(v)=\tilde{\mu}\left(\tilde{c}-\mathrm{e}^{q-v}\right) g(v) \\
y_{12}(v)=0 & y_{22}(v)=\tilde{\mu} \mathrm{e}^{-q}\left(\tilde{c}+\mathrm{e}^{v-q}\right) g(v) \tag{A13}\\
z_{1}(v)=v \cosh (q-v) f(v) & z_{2}(v)=0
\end{array}
$$

where $f(v) / g(v) \not \equiv$ constant. By $\mathrm{Eq}[1.2], \mathrm{Eq}[1.4]$ and $\mathrm{Eq}[2.1], \mathrm{Eq}[4.1]$, respectively, we find that both cases (A13) and (A12) do not exist, so there is only one case (A11). Now we deal with the diagonal elements of $K(v)$.

We can see from $\mathrm{Eq}[1.4]$ and [4.1] that there are five choices for the parameters $\mu, v, \tilde{\mu}, \tilde{v}$ as follows:

$$
\begin{equation*}
\mu=0 \quad \tilde{\mu}=0 \tag{i}
\end{equation*}
$$

(ii) $\quad \mu \neq 0 \quad \tilde{\mu}=0 \quad(\Rightarrow \tilde{v}=0)$
(iii) $\quad \mu=0 \quad \tilde{\mu} \neq 0 \quad(\Rightarrow v=0)$
(iv.a) $\quad \mu \neq 0 \quad \tilde{\mu} \neq 0 \quad v=0 \quad(\Rightarrow \tilde{v}=0)$
(iv.b) $\quad \mu \neq 0 \quad \tilde{\mu} \neq 0 \quad v \neq 0 \quad\left(\Rightarrow \tilde{v}=\left(\frac{\tilde{\mu}}{\mu}\right)^{2} v\right)$.

A.1. Case (i)

For case (i), let $X_{i}(u)=x_{i}(u) /[\cosh (q-u) g(u)]$, then from $\operatorname{Eq}[2,4]$ and $\mathrm{Eq}[6,8]$, we have
$\frac{\mathrm{e}^{u} X_{1}(u) \mathrm{e}^{v} X_{1}(v)-X_{2}(u) X_{2}(v)+v \tilde{v}}{\sinh \left(\frac{1}{2}(u+v)\right)}=\frac{\mathrm{e}^{u} X_{1}(u) X_{2}(v)-X_{2}(u) \mathrm{e}^{v} X_{1}(v)}{\sinh \left(\frac{1}{2}(u-v)\right)}$
$\frac{\mathrm{e}^{-u} X_{3}(u) \mathrm{e}^{-v} X_{3}(v)-X_{2}(u) X_{2}(v)+v \tilde{v}}{\sinh \left(\frac{1}{2}(u+v)\right)}=\frac{\mathrm{e}^{-u} X_{3}(u) X_{2}(v)-X_{2}(u) \mathrm{e}^{-v} X_{3}(v)}{\sinh \left(\frac{1}{2}(u-v)\right)}$.
Here we have two choices, (a) $v \tilde{v}=0$, (b) $v \tilde{v} \neq 0$.
A.1.1. Case (a). If $X_{2} \equiv 0$, from (A15) and (A16), we can obtain

$$
\left.\begin{array}{rl}
z_{1}(u)=h(u) \quad x_{1}(u) & =x_{2}(u) \\
& =x_{3}(u)=y_{11}(u)=y_{12}(u)=y_{21}(u)=y_{22}(u) \tag{A17}\\
& =z_{2}(u)
\end{array}\right)=0
$$

where $h(u) \not \equiv 0$ is an arbitrary function. If $X_{2} \not \equiv 0$, following from (A15) and (A16), we have

$$
\begin{align*}
& x_{1}(u)=\mathrm{e}^{-u}\left(c_{1} \mathrm{e}^{u / 2}+\mathrm{e}^{-u / 2}\right)\left(\mathrm{e}^{u / 2}+c_{2} \mathrm{e}^{-u / 2}\right) f(u) \\
& x_{2}(u)=\left(\mathrm{e}^{u / 2}+c_{1} \mathrm{e}^{-u / 2}\right)\left(\mathrm{e}^{u / 2}+c_{2} \mathrm{e}^{-u / 2}\right) f(u) \tag{A18}\\
& x_{3}(u)=\mathrm{e}^{u}\left(\mathrm{e}^{u / 2}+c_{1} \mathrm{e}^{-u / 2}\right)\left(c_{2} \mathrm{e}^{u / 2}+\mathrm{e}^{-u / 2}\right) f(u) .
\end{align*}
$$

Here $f(u) \not \equiv 0$ is an arbitrary function, c_{1}, c_{2} are arbitrary parameters. Eq[3.5] implies $c_{1}=c_{2}=C \mathrm{e}^{-3 q}$ with $C^{2}=-1$, then we obtain

$$
\begin{align*}
& x_{1}(u)=2 \mathrm{e}^{-3 q-u}(\sinh (3 q)+C \cosh (u)) f(u) \\
& x_{2}(u)=2 \mathrm{e}^{-3 q}(\sinh (3 q+u)+C) f(u) \tag{A19}\\
& x_{3}(u)=2 \mathrm{e}^{-3 q+u}(\sinh (3 q)+C \cosh (u)) f(u) .
\end{align*}
$$

The $\nu \tilde{v}=0$ contain the following three cases:

$(\mathrm{a} 1)$	$v=0$	$\tilde{v}=0$
$(\mathrm{a} 2)$	$v \neq 0$	$\tilde{v}=0$
$(\mathrm{a} 3)$	$v=0$	$\tilde{v} \neq 0$.

For the case (a1), this is a diagonal solution

$$
\begin{align*}
& x_{1}(u)=\mathrm{e}^{-u}\left(\cosh \left(3 q-\frac{1}{2} u\right)+C \sinh \left(\frac{1}{2} u\right)\right) \tilde{\rho}^{k}(u) \\
& x_{2}(u)=\left(\cosh \left(3 q+\frac{1}{2} u\right)-C \sinh \left(\frac{1}{2} u\right)\right) \tilde{\rho}^{k}(u) \tag{A21}\\
& x_{3}(u)=\mathrm{e}^{u}\left(\cosh \left(3 q-\frac{1}{2} u\right)+C \sinh \left(\frac{1}{2} u\right)\right) \tilde{\rho}^{k}(u)
\end{align*}
$$

with $\tilde{\rho}^{k}(u)=2 \mathrm{e}^{-3 q}(\sinh (3 q+u / 2)+C \cosh (u / 2))(\cosh (3 q))^{-1} f(u)$. For case (a2), by Eq[2,6] and $\mathrm{Eq}[1,3]$ we find that this case does not exist. For case (a3), by $\mathrm{Eq}[6,2]$ and $\mathrm{Eq}[3,1]$ we find that this case also does not exist.
A.1.2. Case (b). When $v=0$ in (A15), we can find that $\mathrm{e}^{u} X_{1}(u)+X_{2}(u)$ is a constant and $\mathrm{e}^{u} X_{1}(u)-X_{2}(u)$ is also a constant while $v=\sqrt{-1} \pi$ in (A15). Therefore, $\mathrm{e}^{u} X_{1}(u)$ and $X_{2}(u)$ are both constants, $\mathrm{e}^{u} X_{1}(u)=c_{1}, X_{2}(u)=c_{2}$ with $c_{1}^{2}-c_{2}^{2}+v \tilde{v}=0$. Similarly, from (A16) we have $\mathrm{e}^{-u} X_{3}(u)=c_{3}$ with $c_{3}^{2}-c_{2}^{2}+v \tilde{v}=0$. We now have two possibilities, $c_{1}=c_{3}$ or $c_{1}=-c_{3}$. When $c_{1}=c_{3}$, Eq[2,6] implies $c_{1}=0$ and $\mathrm{Eq}[1,3]$ indicates $c_{2}=0$, which contradicts $v \tilde{v} \neq 0$. When $c_{1}=-c_{3}$, Eq[3,7] implies $c_{1}=0$ and Eq[1,3] indicates $c_{2}=0$, which also contradicts $v \tilde{v} \neq 0$. Therefore, there is only diagonal solution for case (i).

When $g(0)=0$, the above discussion does not work. The solutions for this case are obtained in [10], which have two free parameters and will reduce to the trivial diagonal solutions when one of the parameters vanishes.

A.2. Case (ii)

By $\mathrm{Eq}[1,4]$ we obtain

$$
\begin{align*}
& x_{1}(u)=\frac{\mathrm{e}^{-q}}{\sinh (u)}\left(c_{1}+c_{2} \mathrm{e}^{-u}\right)\left(c-\mathrm{e}^{q-u}\right) g(u) \tag{A22}\\
& x_{2}(u)=\frac{\mathrm{e}^{-q}}{\sinh (u)}\left(c_{1}+c_{2} \mathrm{e}^{u}\right)\left(c-\mathrm{e}^{q-u}\right) g(u) \tag{A23}
\end{align*}
$$

where c_{1} and c_{2} are arbitrary constants. By Eq[6,9] we obtain

$$
\begin{align*}
& x_{3}(u)=\frac{\mathrm{e}^{2 q}}{\sinh (u)}\left(c_{3}+c_{4} \mathrm{e}^{u}\right) \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right) g(u) \tag{A24}\\
& x_{2}(u)=\frac{\mathrm{e}^{2 q}}{\sinh (u)}\left(c_{3}+c_{4} \mathrm{e}^{-u}\right) \mathrm{e}^{-q}\left(c-\mathrm{e}^{u-q}\right) g(u) \tag{A25}
\end{align*}
$$

where c_{3} and c_{4} are arbitrary constants. From (A23) and (A25), we have

$$
\begin{align*}
& c_{1}=-c c_{4} \mathrm{e}^{q} \tag{A26}\\
& c_{3}=c c_{2} \mathrm{e}^{-q} \tag{A27}\\
& \left(1+c^{2}\right)\left(c_{2}+c_{4}\right)=0 . \tag{A28}
\end{align*}
$$

From (A28) we have two choices $c_{2}=-c_{4}$ or $c^{2}=-1$. When $c_{2}=-c_{4}$, Eq[2,6] implies that c_{2} and c_{4} are not constants which contradicts (A23) and (A25). When $c^{2}=-1$, substituting (A22), (A23) and (A27) into Eq[2,6], we obtain

$$
\begin{align*}
& c_{1}=-\frac{\mu^{2}}{v} \frac{c \mathrm{e}^{-2 q} \sinh (q)}{\sinh (2 q)} \tag{A29}\\
& c_{2}=\frac{\mu^{2}}{v} \frac{\mathrm{e}^{q} \sinh (q)}{\sinh (2 q)} . \tag{A30}
\end{align*}
$$

Then we obtain

$$
\begin{align*}
& x_{1}(u)=\frac{1}{\sinh (u)} \frac{\mu^{2}}{v} \frac{\mathrm{e}^{-q-u}}{\cosh (q)}(c \cosh (q)+\sinh (u-2 q)) g(u) \\
& x_{2}(u)=\frac{1}{\sinh (u)} \frac{\mu^{2}}{v} \frac{\mathrm{e}^{-q}}{\cosh (q)}(c \cosh (q+u)-\sinh (2 q)) g(u) \tag{A31}\\
& x_{3}(u)=\frac{1}{\sinh (u)} \frac{\mu^{2}}{v} \frac{\mathrm{e}^{-q+u}}{\cosh (q)}(c \cosh (q)+\sinh (u-2 q)) g(u)
\end{align*}
$$

with

$$
\begin{array}{ll}
y_{11}(u)=\mu\left(c-\mathrm{e}^{q-u}\right) g(u) & y_{12}(u)=\mu \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right) g(u) \\
z_{1}(u)=v \cosh (q-u) g(u) & y_{21}(u)=y_{22}(u)=z_{2}(u)=0 . \tag{A32}
\end{array}
$$

A.3. Case (iii)

Like case (ii), by $\mathrm{Eq}[4,1], \mathrm{Eq}[9,6]$ and $\mathrm{Eq}[6,2]$ we can obtain

$$
\begin{align*}
& y_{21}(u)=\tilde{\mu}\left(c-\mathrm{e}^{q-u}\right) g(u) \quad y_{22}(u)=\tilde{\mu} \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right) g(u) \\
& z_{2}(u)=\tilde{v} \cosh (q-u) g(u) \quad y_{11}(u)=y_{12}(u)=z_{1}(u)=0 \\
& x_{1}(u)=\frac{1}{\sinh (u)} \frac{\tilde{\mu}^{2}}{\tilde{v}} \frac{\mathrm{e}^{-q-u}}{\cosh (q)}(c \cosh (q)+\sinh (u-2 q)) g(u) \tag{A33}\\
& x_{2}(u)=\frac{1}{\sinh (u)} \frac{\tilde{\mu}^{2}}{\tilde{v}} \frac{\mathrm{e}^{-q}}{\cosh (q)}(c \cosh (q+u)-\sinh (2 q)) g(u) \\
& x_{3}(u)=\frac{1}{\sinh (u)} \frac{\tilde{\mu}^{2}}{\tilde{v}} \frac{\mathrm{e}^{-q+u}}{\cosh (q)}(c \cosh (q)+\sinh (u-2 q)) g(u)
\end{align*}
$$

with $c^{2}=-1$.

A.4. Case (iv.a)

$\operatorname{Eq}[1,7]$ implies $\mu=0$ and $\operatorname{Eq}[7,1]$ implies $\tilde{\mu}=0$ which contradicts our assumption $\mu \neq 0$ and $\tilde{\mu} \neq 0$. Therefore, this case does not exist.

A.5. Case (iv.b)

By $\mathrm{Eq}[1,4]$ we obtain

$$
\begin{gather*}
x_{1}(v)=\frac{\mathrm{e}^{-q}}{\sinh (v)}\left[\left(c_{1}+c_{2} \mathrm{e}^{-v}\right)\left(c-\mathrm{e}^{q-v}\right)+\frac{\tilde{\mu} v}{2 \mu}\left(c \mathrm{e}^{q-v} \cosh (q)+c \mathrm{e}^{v} \cosh (2 q)\right.\right. \\
\left.\left.-\mathrm{e}^{q-2 v} \sinh (2 q)-\sinh (3 q)\right)\right] g(v) \tag{A34}
\end{gather*}
$$

where c_{1} and c_{2} are arbitrary constants. Substituting $x_{1}(v)$ into $\mathrm{Eq}[1.4]$, we obtain

$$
\begin{align*}
x_{2}(u)=\frac{\mathrm{e}^{-q}}{\sinh (u)} & {\left[\left(c_{1}+c_{2} \mathrm{e}^{u}\right)\left(c-\mathrm{e}^{q-u}\right)\right.} \\
& \left.+\frac{\tilde{\mu} v}{2 \mu}\left(c \mathrm{e}^{q-u} \cosh (q)+c \mathrm{e}^{u} \cosh (2 q)-\mathrm{e}^{q} \sinh (2 q)-\sinh (3 q)\right)\right] g(u) \\
& +\frac{\tilde{\mu} v}{\mu}(c \cosh (q)+\cosh (u-2 q) \\
& \left.+\frac{\mathrm{e}^{-q}+c \mathrm{e}^{-v}-\left(1+c^{2}\right) \mathrm{e}^{u+v-q}}{c-\mathrm{e}^{q-v}} \cosh (2 q)\right) g(u) . \tag{A35}
\end{align*}
$$

We know that $x_{2}(u)$ should not depend on v. It is easy to find that only when $c^{2}=-1$ can v disappear from $x_{2}(u)$, therefore we obtain

$$
\begin{align*}
x_{2}(u)=\frac{\mathrm{e}^{-q}}{\sinh (u)} & {\left[\left(c_{1}+c_{2} \mathrm{e}^{u}\right)\left(c-\mathrm{e}^{q-u}\right)\right.} \\
& \left.+\frac{\tilde{\mu} v}{2 \mu}\left(c \mathrm{e}^{q-u} \cosh (q)+c \mathrm{e}^{u} \cosh (2 q)-\mathrm{e}^{q} \sinh (2 q)-\sinh (3 q)\right)\right] g(u) \\
& +\frac{\tilde{\mu} v}{\mu}\left(c \mathrm{e}^{-2 q} \sinh (q)+\cosh (u-2 q)\right) g(u) . \tag{A36}
\end{align*}
$$

Similarly, by Eq[6.9]

$$
\begin{align*}
& x_{3}(u)=\frac{\mathrm{e}^{2 q}}{\sinh (u)} {\left[\left(c_{3}+c_{4} \mathrm{e}^{u}\right) \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right)+\frac{\tilde{\mu} v}{2 \mu} \mathrm{e}^{-2 q}\left(c \mathrm{e}^{q-u} \cosh (2 q)+c \mathrm{e}^{u} \cosh (q)\right.\right.} \\
&\left.\left.-\mathrm{e}^{2 u} \sinh (2 q)-\mathrm{e}^{q} \sinh (3 q)\right)\right] g(u) \tag{A37}\\
& x_{2}(u)=\frac{\mathrm{e}^{2 q}}{\sinh (u)} {\left[\left(c_{3}+c_{4} \mathrm{e}^{-u}\right) \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right)\right.} \\
&+\left.\frac{\tilde{\mu} v}{2 \mu} \mathrm{e}^{-2 q}\left(c \mathrm{e}^{q-u} \cosh (2 q)+c \mathrm{e}^{u} \cosh (q)-\sinh (2 q)-\mathrm{e}^{q} \sinh (3 q)\right)\right] g(u) \\
&+\frac{\tilde{\mu} v}{\mu}\left(c \mathrm{e}^{2 q} \sinh (q)+\cosh (u-2 q)\right) g(u) \tag{A38}
\end{align*}
$$

with $c^{2}=-1$, where c_{3} and c_{4} are arbitrary constants. Combining equations (A36) and (A38), there are

$$
\begin{align*}
& c_{3}=c c_{2} \mathrm{e}^{-q}-\frac{c}{2} \frac{\tilde{\mu} v}{\mu} \mathrm{e}^{2 q} \sinh (q) \\
& c_{4}=c c_{1} \mathrm{e}^{-q}-\frac{1}{2} \frac{\tilde{\mu} v}{\mu} \mathrm{e}^{-3 q} \sinh (q) . \tag{A39}
\end{align*}
$$

So $x_{3}(u)$ can be rewritten as

$$
\begin{align*}
& x_{3}(u)=\frac{\mathrm{e}^{2 q}}{\sinh (u)} {\left[\left(c c_{2}+c c_{1} \mathrm{e}^{u}\right) \mathrm{e}^{-2 q}\left(c+\mathrm{e}^{u-q}\right)-\frac{\tilde{\mu} v}{2 \mu} \sinh (q)\left(c \mathrm{e}^{2 q}+\mathrm{e}^{u-3 q}\right) \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right)\right.} \\
&\left.+\frac{\tilde{\mu} v}{2 \mu} \mathrm{e}^{-2 q}\left(c \mathrm{e}^{q-u} \cosh (2 q)+c \mathrm{e}^{u} \cosh (q)-\mathrm{e}^{2 u} \sinh (2 q)-\mathrm{e}^{q} \sinh (3 q)\right)\right] g(u) \tag{A40}
\end{align*}
$$

The two constants c_{1} and c_{2} remain unknown. Substituting equations (A34) and (A36) into Eq[2.4], we obtain

$$
\begin{align*}
& c_{1}=-c \frac{\mu^{2}}{v} \frac{\mathrm{e}^{-2 q} \sinh (q)}{\sinh (2 q)}-c \frac{\tilde{\mu} v}{\mu} \sinh (q) \cosh (2 q) \\
& c_{2}=\frac{\mu^{2}}{v} \frac{\mathrm{e}^{q} \sinh (q)}{\sinh (2 q)}-\frac{\tilde{\mu} v}{\mu} \mathrm{e}^{-q} \sinh (q) . \tag{A41}
\end{align*}
$$

Substituting equation (A41) into equations (A34), (A36) and (A40), we achieve the final results,

$$
\begin{aligned}
& x_{1}(u)=\frac{1}{\sinh (u)}\left[\frac{\mu^{2}}{v} \frac{\mathrm{e}^{-q-u}}{\cosh (q)}(c \cosh (q)+\sinh (u-2 q))\right. \\
& \left.+\frac{\tilde{\mu} v}{\mu} \cosh (q-u)\left(c \cosh (2 q)-\mathrm{e}^{-u} \sinh (q)\right)\right] g(u) \\
& x_{2}(u)=\frac{1}{\sinh (u)}\left[\frac{\mu^{2}}{v} \frac{\mathrm{e}^{-q}}{\cosh (q)}(c \cosh (q+u)-\sinh (2 q))\right. \\
& \left.+\frac{\tilde{\mu} v}{\mu} \cosh (q-u)(c \cosh (2 q)+\sinh (u-q))\right] g(u) \\
& x_{3}(u)=\frac{1}{\sinh (u)}\left[\frac{\mu^{2}}{v} \frac{\mathrm{e}^{-q+u}}{\cosh (q)}(c \cosh (q)+\sinh (u-2 q))\right. \\
& \left.+\frac{\tilde{\mu} v}{\mu} \cosh (q-u)\left(c \cosh (2 q)-\mathrm{e}^{u} \sinh (q)\right)\right] g(u) . \\
& y_{11}(u)=\mu\left(c-\mathrm{e}^{q-u}\right) g(u) \quad y_{21}(u)=\tilde{\mu}\left(c-\mathrm{e}^{q-u}\right) g(u) \\
& y_{12}(u)=\mu \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right) g(u) \quad y_{22}(u)=\tilde{\mu} \mathrm{e}^{-q}\left(c+\mathrm{e}^{u-q}\right) g(u) \\
& z_{1}(u)=v \cosh (q-u) g(u) \quad z_{2}(u)=\tilde{v} \cosh (q-u) g(u) \\
& \text { with } c^{2}=-1 \text {. }
\end{aligned}
$$

A.6. Summary

Letting $v=\mu^{2}, \tilde{v}=\tilde{\mu}^{2}$ and

$$
g(u)=\frac{\mathrm{e}^{q} \sinh (u) \cosh (3 q)}{\sinh (u / 2-2 q)+c \cosh (q+u / 2)} \tilde{\rho}^{k}(u)
$$

in (A42) and (A43), then taking $\mu=0, \tilde{\mu}=0$, we can obtain (A21). Taking $\tilde{\mu}=\tilde{v}=0$ in (A42) and (A43), we can obtain (A31) and (A32). The (A33) can be obtained by replacing the v in (A42) and (A43) with $(\mu / \tilde{\mu})^{2} \tilde{v}$ and taking $\mu=0$.

We have checked $\mathrm{Eq}[i, j](i, j \in[1,9])$ by substituting (A42) and (A43) into (5).

References

[1] Cherednik I V 1983 Theor. Math. Phys. 1777
Cherednik I V 1984 Theor. Math. Phys. 66911
[2] Sklyanin E K 1988 J. Phys. A: Math. Gen. 212735
[3] de Vega H J and Gonzalez-Ruiz A 1994 Nucl. Phys. B 417553
de Vega H J and Gonzalez-Ruiz A 1994 Mod. Phys. Lett. A 92207
[4] Gonzalez-Ruiz A 1994 Nucl. Phys. B 424468
[5] Mezincescu L, Nepomechie R I and Rittenberg V 1990 Phys. Lett. A 14770
[6] Hou B Y, Shi K J, Fan H and Yang Z X 1995 Commun. Theor. Phys. 23163
[7] Fu H C and Ge M L 1994 J. Phys. A: Math. Gen. 274457
[8] Mezincescu L and Nepomechie R I 1991 Int. J. Mod. Phys. A 65231
[9] Batchelor M T, Fridkin V, Kuniba A and Zhou Y K 1996 Phys. Lett. B 376266
[10] Kim J D 1994 Preprint hep-th/9412192
[11] de Vega H J and Gonzalez-Ruiz A 1993 J. Phys. A: Math. Gen. 26 L519
[12] Jimbo M, Kedem R, Kojima T, Konno H and Miwa T 1995 Nucl. Phys. B 441437
[13] de Vega H J and Gonzalez-Ruiz A 1994 J. Phys. A: Math. Gen. 276129
[14] Hou B Y and Yue R H 1993 Phys. Lett. A 183169
[15] Inami T and Konno H 1994 J. Phys. A: Math. Gen. 27 L913
[16] Inami T, Odake S and Zhang Y Z 1996 Nucl. Phys. B 470419
[17] Izergin A G and Korepin V E 1981 Commun. Math. Phys. 113303
[18] Jimbo M 1986 Commun. Math. Phys. 102537
[19] Bazhanov V V 1987 Commun. Math. Phys. 113471
[20] Yang C N and Yang C P 1966 Phys. Rev. 105321 Yang C N and Yang C P 1966 Phys. Rev. 151258
[21] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[22] Mezincescu L and Nepomechie R I 1991 J. Phys. A: Math. Gen. 24 L17

